top of page

Publications

28. Photoelectrochemical Proton-Coupled Electron Transfer of TiO  Thin Films on Silicon

Nedzbala, H. S.; Westbroek, D.; Margavio, H. RM.; Yang, H.; Noh, H. Magpantay, S. V.; Donley, C. L.; Kumbhar A. S.; Parsons, G. N.; Mayer, J. M., J. Am. Chem. Soc. 2024Just Accepted 

https://pubs.acs.org/doi/full/10.1021/jacs.4c00014

2

image.png

27. Medium-Independent Hydrogen Atom Binding Isotherms of Nickel Oxide Electrodes

Noh, H. and Mayer, J. M., Chem ​​20228, 3324-3345. https://doi.org/10.1016/j.chempr.2022.08.018

Medium-Independent Hydrogen Atom Binding Isotherms of Nickel Oxide Electrodes

26. Hot Press Synthesis of MOF/Textile Composites for Nerve Agent Detoxification

Turetsky, D., Alzate-Sánchez, D., Wasson, M. C., Yang, A.; Noh, H.; Atligan, A.; Islamoglu, T.; Farha, O. K.; Dichtel, W. R. ACS Mater. Lett. 2022, 4, 1511-1515. https://doi.org/10.1021/acsmaterialslett.2c00258 

Hot Press Synthesis of MOF/Textile Composites for Nerve Agent Detoxification

25. An iron-porphyrin grafted metal–organic framework as a heterogeneous catalyst for the photochemical reduction of CO

Zhang, K.; Goswami, S.; Noh, H.; Lu, Z.; Sheridan, T.; Duan, J.; Dong, W.; Hupp, J. T. J. Photochem. Photobio. 2022, 10, 100111. https://doi.org/10.1016/j.jpap.2022.100111

2

An iron-porphyrin grafted metal–organic framework as a heterogeneous catalyst for the photochemical reduction of CO2

24. Free Energies of Proton-Coupled Electron Transfer Reagents and Their Applications

Agarwal, R. G.; Coste, S. C.; Groff, B. D.; Heuer, A. M.; Noh, H.; Parada, G. A.; Wise, C. F.; Nichols, E. M.; Warren, J. J.; Mayer, J. M. Chem. Rev. 2021, 122, 1-49. https://doi.org/10.1021/acs.chemrev.1c00521

Free Energies of Proton-Coupled Electron Transfer Reagents and Their Applications

23. Engineering Dendrimer-Templated, Metal−Organic Framework-Confined Zero-Valent, Transition-Metal Catalysts

Yang, Y.; Noh, H.; Ma, Q.; Wang, R.; Chen, Z.; Schweitzer, N. M.; Liu, J.; Chapman, K.; Hupp, J. T. ACS Appl. Mater. Interfaces 2021, 13, 36232-36239. https://doi.org/10.1021/acsami.1c11541

Engineering Dendrimer-Templated, Metal−Organic Framework-Confined Zero-Valent, Transition-Metal Catalysts

22. Unexpected “Spontaneous” Evolution of Catalytic, MOF-Supported Single Cu(II) Cations to Catalytic, MOF-Supported Cu(0) Nanoparticles

Yang, Y.; Zhang, X.; Kanchanakungwankul, S.; Lu, Z.; Noh, H.; Syed, Z. H.; Farha, O. K.; Truhlar, D. G.; Hupp, J. T. J. Am. Chem. Soc. 2020, 142, 21169-21177. https://doi.org/10.1021/jacs.0c10367

Unexpected “Spontaneous” Evolution of Catalytic, MOF-Supported Single Cu(II) Cations to Catalytic, MOF-Supported Cu(0) Nanoparticles

21. Stabilization of Low Valent Zirconium Nitrides in Titanium Nitride via Plasma-Enhanced Atomic Layer Deposition and Assessment of Electrochemical Properties

Noh, H.; Jeon, N.; Martinson, A. B. F.; Hupp, J. T. ACS Appl. Energy Mater. 2020, 3, 5095-5100. 

https://doi.org/10.1021/acsaem.0c00428

Stabilization of Low Valent Zirconium Nitrides in Titanium Nitride via Plasma-Enhanced Atomic Layer Deposition and Assessment of Electrochemical Properties

20. Single‐Site, Single‐Metal‐Atom, Heterogeneous Electrocatalyst: Metal–Organic‐Framework Supported Molybdenum Sulfide for Redox Mediator‐Assisted Hydrogen Evolution Reaction

Noh, H.†; Yang, Y.†; Zhang, X.; Goetjen, T. A.; Syed, Z. H.; Lu, Z.; Ahn, S.; Farha, O. K.; Hupp, J. T. ACS Appl. Energy Mater. 2020, 3, 5095-5100. († equal contributions) https://doi.org/10.1002/celc.201901650

Single‐Site, Single‐Metal‐Atom, Heterogeneous Electrocatalyst: Metal–Organic‐Framework Supported Molybdenum Sulfide for Redox Mediator‐Assisted Hydrogen Evolution Reaction

19. Isobutane dehydrogenation over bulk and supported molybdenum sulfide catalysts

Cheng, E.; McCullough, L.; Noh, H.; Farha, O. K.; Hupp, J. T.; Notestein, J. M. Ind. Eng. Chem. Res. 2019, 59, 1113-1122. https://doi.org/10.1021/acs.iecr.9b05844

Isobutane dehydrogenation over bulk and supported molybdenum sulfide catalysts

18. Vapor-Phase Fabrication and Condensed-Phase Application of a MOF-Node-Supported Iron-Thiolate Photocatalyst for Nitrate Conversion to Ammonium

Choi, H.; Peters, A. W.; Noh, H.; Gallington, L. C.; Platero-Prats, A. E.; Destefano, M. R.; Rimoldi, M.; Chapman, K. W.; Farha, O. K.; Hupp, J. T. ACS Appl. Energy Mater. 2019, 2, 8695–8700. 

https://doi.org/10.1021/acsaem.9b01664

Vapor-Phase Fabrication and Condensed-Phase Application of a MOF-Node-Supported Iron-Thiolate Photocatalyst for Nitrate Conversion to Ammonium

17. Tailorable topologies for selectively controlling crystals of expanded Prussian blue analogues

Zhang, K.; Lee, T. H.; Noh, H.; Farha, O. K.; Jang, H. W.; Choi, J-. W.; Mohammadreza, S. Cryst. Growth Des. 2019, 19, 7385-7395. https://doi.org/10.1021/acs.cgd.9b01309

Tailorable topologies for selectively controlling crystals of expanded Prussian blue analogues

16. Realization of Lithium-Ion Capacitors with Enhanced Energy Density via the Use of Gadolinium Hexacyanocobaltate as a Cathode Material

Zhang, K.; Lee, T. H.; Noh, H.; Islamoglu, T.; Farha, O. K.; Jang, H. W.; Choi, J. -W.; Shokouhimehr, M. ACS Appl. Mater. Interfaces 2019, 11, 31799-31805. https://pubs.acs.org/doi/abs/10.1021/acsami.9b07711

Realization of Lithium-Ion Capacitors with Enhanced Energy Density via the Use of Gadolinium Hexacyanocobaltate as a Cathode Material

15. Stabilization of Formate Dehydrogenase in a Metal-Organic Framework for Bioelectrocatalytic Reduction of CO

Chen, Y.; Li, P.; Noh, H.; Kung, C-. W.; Buru, C. T.; Wang, X.; Zhang, X.; Farha, O. K. Angew. Chem. Int. Ed. 2019, 131, 7764-7768. https://doi.org/10.1002/anie.201901981

2

Stabilization of Formate Dehydrogenase in a Metal-Organic Framework for Bioelectrocatalytic Reduction of CO2

14. Interrogating Kinetic versus Thermodynamic Topologies of Metal-Organic Frameworks via Combined Transmission Electron Microscopy and X-ray Diffraction Analysis

Gong, X.†; Noh, H.†; Gianneschi, N. C.; Farha, O. K. J. Am. Chem. Soc. 2019, 141, 6146-6151. († equal contributions) https://doi.org/10.1021/jacs.9b01789

Interrogating Kinetic versus Thermodynamic Topologies of Metal-Organic Frameworks via Combined Transmission Electron Microscopy and X-ray Diffraction Analysis

13. Pore-templated Growth of Catalytically-Active Gold Nanoparticles within a Metal–Organic Framework

Goswami, S.; Noh, H.; Redfern, L. R.; Otake, K.; Kung, C-. W.; Cui, Y.; Chapman, K. W.; Farha, O. K.; Hupp, J. T. Chem. Mater. 2019, 31, 1485-1490.https://doi.org/10.1021/acs.chemmater.8b04983

Pore-templated Growth of Catalytically-Active Gold Nanoparticles within a Metal–Organic Framework

12. A New Bismuth Metal–Organic Framework as Contrast Agent for X-ray Computed Tomography

Robinson, L.; Zhang, L.; Drout, R. J.; Li, P.; Haney, C.; Brikha, A.; Noh, H.; Mehdi, B. L.; Browning, N. D.; Dravid, V. P.; Cui, Q.; Islamoglu, T.; Farha, O. K. ACS Appl. Bio Mater. 2019, 2, 1197-1203. 

https://doi.org/10.1021/acsabm.8b00778

A New Bismuth Metal–Organic Framework as Contrast Agent for X-ray Computed Tomography

11. Core-shell Gold Nanorod@Zirconium-based Metal–Organic Framework Composites as in situ Size-Selective Raman Probes

Osterrieth, J. W. M.; Wright, D.; Noh, H.; Kung, C. -W.; Vulpe, D.; Li, A.; Park, J. E.; Van Duyne, R. P.; Moghadam, P. Z.; Baumberg, J. J.; Farha, O. K.; Fairen-Jiminez, D. J. Am. Chem. Soc. 2019, 141, 3893-3900. 

https://doi.org/10.1021/jacs.8b11300

Core-shell Gold Nanorod@Zirconium-based Metal–Organic Framework Composites as in situ Size-Selective Raman Probes

10. Molybdenum Sulfide within a Metal–Organic Framework for Photocatalytic Hydrogen Evolution from Water

Noh, H.; Yang, Y.; Ahn, S.; Peters, A. W.; Farha, O. K.; Hupp, J. T. J. Electrochem. Soc. 2019, 166, H3154-H3158. https://iopscience.iop.org/article/10.1149/2.0261905jes/meta

Molybdenum Sulfide within a Metal–Organic Framework for Photocatalytic Hydrogen Evolution from Water

9. Scalable, Room Temperature, and Water-based Synthesis of Functionalized Zirconium-based Metal–Organic Frameworks for Toxic Chemical Removal

Chen, Z.; Wang, X.; Noh, H.; Ayoub, G.; Peterson, G. W.; Buru, C. T.; Islamoglu, T.; Farha, O. K. 

CrystEngComm 2019, 21, 2409-2414. https://doi.org/10.1039/C9CE00213H

Scalable, Room Temperature, and Water-based Synthesis of Functionalized Zirconium-based Metal–Organic Frameworks for Toxic Chemical Removal

8. Redox Mediator-Assisted Electrocatalytic Hydrogen Evolution Reaction from Water by a Molybdenum Sulfide-Functionalized Metal–Organic Framework

Noh, H.; Kung, C.-W.; Otake, K.; Peters, A. W.; Li, Z.; Liao, Y.; Gong, X.; Farha, O. K.; Hupp, J. T. ACS Catal. 20188, 9848-9858. https://doi.org/10.1021/acscatal.8b02921

Redox Mediator-Assisted Electrocatalytic Hydrogen Evolution Reaction from Water by a Molybdenum Sulfide-Functionalized Metal–Organic Framework

7. Beyond the Active Site: Tuning the Activity and Selectivity of a Metal–Organic Framework-Supported Ni Catalysts for Ethylene Dimerization

Liu, J.; Ye, J.; Li, Z.; Otake, K.; Liao, Y.; Peters, A. W.; Noh, H.; Truhlar, D. G.; Gagliardi, L.; Cramer, C. J.; Farha, O. K.; Hupp, J. T. J. Am. Chem. Soc. 2018, 140, 11174-11178. https://doi.org/10.1021/jacs.8b06006

Beyond the Active Site: Tuning the Activity and Selectivity of a Metal–Organic Framework-Supported Ni Catalysts for Ethylene Dimerization

6. Room Temperature Synthesis of an 8-Connected Zr-Based Metal–Organic Framework for Top-Down Nanoparticle Encapsulation

Noh, H.; Kung, C.-W.; Islamoglu, T.; Peters, A. W.; Liao, Y.; Li, P.; Garibay, S. J.; Zhang, X.; DeStefano, M. R.; Hupp, J. T.; Farha, O. K. Chem. Mater. 2018, 30, 2193-2197. https://doi.org/10.1021/acs.chemmater.8b00449

Room Temperature Synthesis of an 8-Connected Zr-Based Metal–Organic Framework for Top-Down Nanoparticle Encapsulation

5. Effect of Redox “Non-Innocent” Linker on the Catalytic Activity of Copper-Catecholate-Decorated Metal–Organic Frameworks

Zhang, X.; Vermeulen, N. A.; Huang, Z.; Cui, Y.; Liu, J.; Krzyaniak, M. D.; Li, Z.; Noh, H.; Wasielewski, M. R.; Delferro, M.; Farha, O. K. ACS Appl. Mater. Interfaces 2018, 10, 635-641. 

https://doi.org/10.1021/acsami.7b15326

Effect of Redox “Non-Innocent” Linker on the Catalytic Activity of Copper-Catecholate-Decorated Metal–Organic Frameworks

4. NanoMOFs: Little Crystallites for Substantial Applications

Majewski, M. B.; Noh, H.; Islamoglu, T.; Farha, O. K. J. Mater. Chem. A 2018, 6, 7338-7350.

https://doi.org/10.1039/C8TA02132E

NanoMOFs: Little Crystallites for Substantial Applications

3. Fine-Tuning the Activity of Metal–Organic Framework-Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane

Li, Z.; Peters, A. W.; Platero-Prats, A. E.; Liu, J.; Kung, C.-W.; Noh, H.; DeStefano, M. R.; Schweitzer, N. M.; Chapman, K. W.; Hupp, J. T.; Farha, O. K. J. Am. Chem. Soc. 2017, 139, 15251-15258. 

https://doi.org/10.1021/jacs.7b09365

Fine-Tuning the Activity of Metal–Organic Framework-Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane

2. Copper Nanoparticles Installed in Metal–Organic Framework Thin Films are Electrocatalytically Competent for CO  Reduction

Kung, C.-W.; Audu, C. O.; Peters, A. W.; Noh, H.; Farha, O. K.; Hupp, J. T. ACS Energy Lett. 2017, 2, 2394-2401. https://doi.org/10.1021/acsenergylett.7b00621

2

Copper Nanoparticles Installed in Metal–Organic Framework Thin Films are Electrocatalytically Competent for CO2  Reduction

1. An Exceptionally Stable Metal–Organic Framework Supported Molybdenum(VI) Oxide Catalyst for Cyclohexene Epoxidation

Noh, H.; Cui, Y.; Peters, A. W.; Pahls, D. R.; Ortuño, M. A.; Vermeulen, N. A.; Cramer, C. J.; Gagliardi, L.; Hupp, J. T.; Farha, O. K. J. Am. Chem. Soc. 2016, 138, 14720-14726. (highlighted as the Editor's Choice in Science) https://doi.org/10.1021/jacs.6b08898

An Exceptionally Stable Metal–Organic Framework Supported Molybdenum(VI) Oxide Catalyst for Cyclohexene Epoxidation
bottom of page